

HAE-003-001607

Seat No.

B. Sc. (Sem. VI) (CBCS) Examination

June / July - 2017

C - 602 : Chemistry

(Organic Chemistry & Spectroscopy)

Faculty Code: 003 Subject Code: 001607

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) This paper contains three questions. All questions are compulsory.

- (2) Question No. l. Carries 20 marks.
- (3) Question No. 2 & 3 carry 25 marks each.
- 1 Answer the following questions:

20

- 1. Give evidence for the presence of two >C=C< group in Citral.
- 2. Write the structure of p-cymene.
- 3. Complete : Alanine + $HNO_2 \rightarrow$
- 4. Write the structure of tyrosine.
- 5. The IUPAC name of ______ is isopropoxy phenyl N-methyl carbamate.
- 6. Write the structure of cyclonite.
- 7. Complete : Diphenylmethane + $Br_2 \rightarrow$
- 8. Complete : Anthracene + excess $\mathrm{H_2SO_4}$ (at 80°C) \rightarrow
- 9. Complete : Diphenylmethane + CrO_3 + $CH_3COOH \rightarrow$
- 10. What is conformational analysis?
- 11. Give the number of pmr signals and their multiplicity in Acetone.

- 12. What information is obtained from the intensity of a signal in NMR spectroscopy?
- 13. What does the following signal in NMR spectra indicate: Singlet at δ 11.5 ppm ?
- 14. What is the ratio of the intensity of split signal in a quartet in NMR spectroscopy?
- 15. What is a base peak in Mass spectrometry?
- 16. What does the following signal indicate 2H quartet and 3H triplet ?
- 17. What is coupling constant?
- 18. What information is obtained from chemical shift?
- 19. C^{13} is NMR active while C^{12} is NMR inactive Why?
- 20. Predict the NMR spectrum for tert-butylchloride.
- 2 (A) Answer Any Three of the following:

6

- (a) Give the synthesis and uses of Parathion.
- (b) Give the synthesis of citral from geranic acid.
- (c) Give the synthesis of amino acids by Gabriel Phthalimide synthesis.
- (d) Give any two methods for the synthesis of diphenyl.
- (e) Write a short note on isoelectric point and Zwitter ions.
- (f) Explain with an example isoprene rule.
- (B) Answer Any Three of the following:

9

- (a) Give the synthesis of Terebic acid.
- (b) Give the synthesis of polypeptides by Bergman Method.
- (c) Give the synthesis of Musk ketone and Musk xylene.

- (d) Explain the synthesis of Anthracene by phthalic anhydride and benzene.
- (e) Give energy diagram indicating the energy changes during rotation about C_2 - C_3 bond in n-butane.
- (f) Complete the following:
 - i. Citral + $Ag_2O \rightarrow$
 - ii. 6HCHO + $4NH_3 \rightarrow$
 - iii. Anthracene + Air $(V_2O_5) \rightarrow$
- (C) Answer Any Two of the following:

10

- (a) Give the synthesis α -terpineol.
- (b) Write a short note on colour reactions of proteins.
- (c) Explain electrophilic substitution reactions of Naphthalene.
- (d) Explain conformational analysis of cyclohexane.
- (e) Give the synthesis of Thyroxine.
- 3 (A) Answer Any Three of the following:

6

- (a) Give the number of pmr signals and their multiplicity in acetonyl acetone.
- (b) Sketch the NMR spectra of anisole.
- (c) How will you distinguish between methyl formate and acetic acid by NMR spectroscopy?
- (d) What does a distinct peak at M-15 indicate in mass spectra?
- (e) Explain cleavage of C-C bond in carbonyl compounds.
- (f) Name the main components of a mass spectrometer.
- (B) Answer Any Three of the following:

9

- (a) Why TMS is used as a reference compound?
- (b) Explain: Aromatic Protons absorb downfield while acetylenic protons absorb upfield.

- (c) Explain the rules of fragmentation in mass spectrometry.
- (d) Write a short note on Mc Lafferty rearrangement.
- (e) Determine structural formula from the following data:

Molecular Formula : $C_9H_{12}O$

NMR: (a) Doublet δ 1.7 (6H)

- (b) Septet δ 3.45 (1 H)
- (c) Complex δ 7.3 (5H)
- (f) Determine the molecular structure for the following from the data:

Molecular formula : C₈H₆

IR Spectral Data : 3300, 3040, 2100, 1605, 1579, 1500, 750, 700 $\rm cm^{-1}$

NMR Spectral Data:

- (a) Singlet δ 2.3 (1H)
- (b) Complex δ 7.4 (5H)
- (C) Answer Any Two of the following:

10

- (a) Explain with a neat diagram, NMR instrumentation technique.
- (b) Write a short note on important features of Mass Spectra of alkanes.
- (c) Determine the structural formula from the following data:

Molecular Formula : $C_9H_{10}O_2$

IR : 3030, 2930, 1670, 1598, 1258, 1020, 833 $\rm cm^{-1}$ NMR :

- (a) Singlet δ 2.5 (3H)
- (b) Singlet δ 3.9 (3H)
- (c) Complex δ 7.5 (4H)

(d) Determine the structural formula from the following data:

Molecular Formula : C_7H_9N

IR : $3440_{(d)}$, 3010, 2945, 2829, 1620, 1600, 1510, 1451, 1270, 810 cm $^{-1}$

NMR Spectral Data:

- (a) Singlet δ 2.3 (3H)
- (b) Singlet δ 1.5 (2H)
- (c) Complex δ 7.2 (4H)
- (e) Determine the molecular structure for the following from the data:

Molecular formula : $C_{11}H_{16}$

IR Spectral Data: 3035, 2980, 2890, 1605, 1580,

 $1450, 1390, 1365, 834 \text{ cm}^{-1}$

NMR Spectral Data:

- (a) Singlet δ 1.0 (27.5 squares)
- (b) Singlet δ 2.8 (9.2 squares)
- (c) Complex δ 7.4 (12.4 squares)

Spectral Data

Infra - Red Data	~ **	0050 0000
Alkene (strcteching)	-C-H	2850-2960(v)
Alkene	=C-H	3100-3200(m)
Alkyene	=C-H	3200-3300(s)
Aromatic	ArC-H	3010-8100(m)
Aromatic ring	C=C	1500-1600(v)
		(two to three)
Alkene	>C=C<	1610-1680(v)
Alkyene	-C≡C-	2100 -2260 (s)
Alkene (Bending)	-C•H	1840(w)
	$-C(C_2H_3)_3$	1430-1470(m) &
		1380-1385(s)
	$-\mathbb{C}(\mathbb{C}\mathbf{H_2})_{3}$	1.365 (s)
Aldehyde	-C-H	2820-2000(w)&2650 -2760(s)
Adehyde	C=O	1740-1720(s)
Ketone	C=0	1725-1710(s)
Carboxylic acid	C=O	1725-1 7 05(s)
Ester	[⊕] C=O	1750-1730(s)
Amide	C=O	1670-1640(s)
Anhydride	C=O	1810-1860(s)&1740-1790
Alecohols, Ethers, esters	7.+1	
Carboxylic acids, Anhydride	C-O	1300-1000(s)
Alcohols, phenols:		
Free	O-H	3650-3600(sh)
bonded	0.H	3500-3200(sh)
Carboxylic acids free	Charles .	5300-5200(D)
Free	О-Н	3500-3650(m)
H-bonded	O-H	
amines (stretch)	N-H	2500-3200(b)
	the Carlotte State Co.	3330-3500(m)
Bnding	·N·H	1640-1550(m)
Nitrile	-C≡N	2210-2280(s)
Ether Alkene hending	<u> </u>	1070-1150(s)
ranono oonung	.c´ [™]	-690(s)
disulstituted Cis.		
H.	9	and the second second
disulstituted Trans.	-н	960-970(s)
Aromatic substitution:		
Type C-H out of plane bending		
No. of adjacent H atom.		range cm
5		750(s) & 700(s)
4		750
3		780
2		830
1		850
•		

NMR Data: Chemical Shift

Chemical shift in δ_{ppm}
0.9
1.3
1.5
I 4.6-5.9
H 2.3
6-8.5
H 2.2-3
CH ₂ 1.7
4-4.5
3.4
2.5-4
2.4
H 3.4-4
R 3.3-4
O-CH 3.7-4.1
OOH 2-2.6
O 2-2.7
9-10
1-5.5
4-12
OH 10.5-12
1.5